
AFGL-TR-89-0078

AD-A207 821
EVALUATION OF THE NSSDC COHON DATA FORMAT

C. E. Jordan
H. J. Singer

DTIC
Radex., Inc.. ELECTE
Three Preston Court MAY 1t1969-
Bedford, MA 01730 M DD

March 7, 1989

Scientific Report No. 2

Approe for public release; distribution unlimited

AIR FOC3 QOP IYSICS LABORATORY
4 AIR FORCM MUM34 coAND

UNITED STATES AIR 10110
NANIMM AIR PO0 BASE, ASAM SETT 01731-5000

89 5 15 047

"This technical report has been reviewed and is approved for publication"

EDWARD C. ROBINSON R .McN
Contract Manager Branch Chief
Data Systems Branch Data Systems Branch

FOR THE COMMANDER

Diviion Director
A ospace Engineering Division

This report has been reviewed by the ESD Public Affairs Office (PA) and is
releasable to the National Technical Information Service (NTIS).

Qualified requestors may obtain additional copies from the Defense Technical
Information Center. All others should apply to the National Technical
Information Service.

If your address has changed, or if you wish to be removed from the mailing list,
or if the addressee is.no longer employed by your organization, please notify
AFGL/DAA, Hanscom AFB, MA 01731. This will assist us in maintaining a current
mailing list.

Do not return copies of this report unless contractual obligations or notices on
a specific document requires that it be returned.

Unclassified
SITY CLASSIFICATION OF TIP-AGE

REPORT DOCUMENTATION PAGE
W REPORT SECURITY CLSSIFICATION lb. RESTRICTIVE MW.GS

Unclassified
2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTIONI AVAILABILTY OF REPORTApproved for public release;

2b. DECLASSIFICAT1ONIOOWNGRAOING SCHEDULE distribution Unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

RX-890301 AFGL-TR-89-0078

61. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYM OL 7a. NAME OF MONITORING ORGANIZATION
Radex, Inc. j applicable) Air Force Geophysics Laboratory

6c ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)
Three Preston Court Hanscom AFB, Massachusetts 01731-5000
Bedford, MA 01730 /r

Ba. NAME OF FUNDING/SPONSORING I Sb. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)

Contract F19628-87-C-0084
Bc. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT !TASK WORK UNIT
ELEMENT NO. NO. NO. ACCESSION NO.
62101F 993 XX YN

11. TITLE (include Securi Classification)

Evaluation of the NSSDC Conmon Data Format

12. PERSONAL AUTHOR(S)
Carolyn Jordan, Howard J. Singer **

13a. TYPE OF REPORT 13b. TIME COVERED 114. DATE OF REPORT (Year. Month Doay) II.PGE COUNT
Scientific Report #2 1 FROM/ TO_4 I 1989 March 07 . 20

16. SUPPLEMENTARY NOTATION **AFGL/PHG, Hanscom AFB, MA 01731

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse If necessary and identify by block number)
FIELD GROUP SUB-GROUP d2Conmon Data Format; Flatfiles; NSSDC; Storage and Timing

Comparisons , - z) .

19.STRACT (Continue on reverse If necessary and Identify by block number)

The National Space Science Data Center has developed a data format system called the Common
Data Format (CDF) which is designed to be useful to many different disciplines and flexible
enough to acconodate many different types of data sets. The Air Force Geophysics Labor-
atory, Space Plasmas and Fields Branch has evaluated this format (VAX/MMS Fortran Version
1.0) comparing it to another commuon format system currently in use, the Flat Data Base
Management System (FlatDBMS), and with Fortran direct access- files with various record
structures. The storage space required by the two packages is comparable to that of the
Fortran direct access files and not greatly in excess of that required by the data itself.
Of the two packages, CDF is more flexible and is adaptable to a broader range of data sets.
However, data retrieval is faster using the FlafnBMS. The CDF requires 2.5 times the CPU
time needed by the FlatDBMS to read, smooth, and write a data set to a file structure which
was the same as that read in. We understand that this deficiency of the CDF will be

(OVER)
20. DISTRIBUTION /AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

flUNCLASSIFIEOiUNUMITED 03 SAME AS RPT. Q DTIC USERS Unclassified
Z1. M| OF RESPONISLE INDIVIDUAL |22b 2. XIt.HONE (include Area Code) 22c. OFICE SYMBOL

E. C. Robinson | 377-3840 IAFGLW/ICY
DO FORM 1473,64 MAR 83 APR edItion may be used until exhausted, - • SEQRITY NQLA N OF THISA

All other editIons are obsolete. UNCibiF -PAGE

Abstract Continued:

overcome in future versions which will allow random aggregate access of the data.
This evaluation of CDFs is based on easily quantified features such as storage space
and CPU time. However, one should keep in mind that there are several important
attributes of a common data structure which are not so readily measured but contribute
significantly to its performance. These features include the self-documenting data
structure, the capability for handling diverse multidimensional data, and the advantages
for facilitating data exchange and software development. Any decision regarding the
implementation of data formats needs to consider both the quantative and qualitative
features.

EVALUATION OF THE NSSDC COMMON DATA FORMAT

TABLE OF CONTENTS

1. Introduction 1

2. FlatDBMS Summary 2

3. CDF Summary 3

4. Storage Comparisons -- Flatfiles 5

5. Storage Comparisons -- Multi-dimensional Files . . . 6

6. Preliminary Timing Comparisons 8

7. Full-Scale Timing Comparison 10

8. Comments 12

9. Acknowledgements 14

REFERENCES 15

Accesion For

NTIS CRAW
DTIC TAB

taU nonrced 0

By
ODsvtibution I

Av..dability Codes

I . ,aiE and Ior
Dist i Special

iiiA

1. Introduction

There is interest in the scientific community in adopting a

data format which is useful to many disciplines and flexible

enough to accommodate many different data sets (flatfiles,

multi-dimensional files, images, etc.). There are many

advantages of such a system such as easier sharing of data

sets and reduced duplication of effort in developing

application software. However, as with any higher level

system, there is an additional cost due to increased storage

requirements and CPU data-access time. Thus, the question

becomes one of expense. Does the common format provide

sufficient benefits to compensate for the additional resource

requirements?

The National Space Science Data Center (NSSDC) has developed

a system called Common Data Format (CDF) (Treinish and Gough, 19871.

Since this format has the potential for widespread use in the

space science community, the Air Force Geophysics Laboratory,

Space Plasmas and Fields Branch, decided to evaluate the CDF

package. The CDF system is compared with one of the other

systems currently used, the Flat Data Base Management System
(FlatDBMS) [Smith and Clauer. 1986aj and with Fortran direct access

files with various record structures.

The following sections will summarize key points of the two

data format packages, discuss storage requirements of the

same data in these different formats versus the Fortran

direct access files, and compare the CPU time required to

read and write data from each of the files. Finally, some

comments will be made regarding the particular strengths and

weaknesses of these format options.

2. FlatDBMS Summary

This package was developed at Stanford University [Smith and

Claw.r, 1986b]. It is a non-hierarchical file structure which

uses two files (one containing data, the other is metadata) to

store the data in simple tables and record descriptive

information about the data set. The data is written to a

direct (random) access file with a fixed record length.

There are seven basic subroutines which create and access the

"flatfile". These are:

FFCREATE -- creates a flatfile,

FFOPEN -- opens an existing flatfile,

FHPUT -- writes information to the header file,

FHGET -- reads information from the header file,

FDPUT -- writes data to the data file,

FDGET -- reads data from the data file,

FFCLOSE -- closes the flatfile.

There are also several utility subroutines which perform

specific operations on the flatfiles. These are intended to

simplify the writing of application software, rather than

affect the data format itself. Plus, there is also a menu-

driven interactive interface for "browsing" through the data

set.

Even though this is a generalized system, certain assumptions

must be made about the files in terms of time representation,

array sizes, data types, header file format, and file units.

However, most of these assumptions may be changed within the

source code of the routines as necessary. The data is

assumed to be in time series with a double precision number

in the first data column. The data is assumed to be 4-byte

real numbers (however, one may use a Fortran EQUIVALENCE

statement should 8-bytes be desired; this is what is done for

the time data in the first column). There is a limit of 100

data columns. The header records have an 80 character limit.

One may have six files open at once. This system is designed

to be used with Fortran.

2

The authors of this package acknowledge some points requiring

improvement. Primarily, there is a problem with the

efficiency of using sequential data. Reading one record

at a time using a binary search to pinpoint the desired

record is quite slow. Thus, this system is not ideal for

processing large numbers of consecutive records. Also, they
note that disk space is used inefficiently for the sake of

simplicity. This particular problem is prohibitive should

one have a strongly hierarchical data set.

3. CDF Summary

This package allows for the representation of multi-

dimensional data sets as well flat data sets [Gough et al., 1988].

It also has a direct access structure. This system may

currently be used with both Fortran and C codes. There are

thirteen basic subroutines which create and access the CDF.

These are:

CDFcreate -- create a new set of CDF files,

CDFdelete -- delete a sec of CDF files,

CDFopen -- open an existing set of files,

CDFclose -- close an open set of files,

CDF inquire -- obtain information regarding any CDF,

CDFvarcreate -- create a variable,

CDFvar_put -- write data to the variable file,

CDF_varget -- read data from the variable file,

CDFvarinquire -- obtain information about the variable,

CDFattrcreate -- create an attribute,

CDFattr_put -- write information to header file,

CDFattrget -- read information from the header file,

CDFattrinquire -- obtain information about the attribute.

The CDF also contains data and metadata, but unlike the

flatfile which does this using only two files, the CDF has

two files (with extensions .CDF and .CDH) plus a file for

every variable (with extensions .Vnn, where nn is the

3

variable number). The .CDH file contains the header

information. The .CDF file contains the format information

for the variables themselves. There are six supported data

types: BYTE, STRING, INT*2, INT*4, REAL*4, and REAL*8.

Variables may be single values or arrays. However, all the

variables must have the same dimension. This is so that each

variable may be correlated with every other variable. Not

every variable requires the full dimensions, thus the user

specifies how a given variable changes with each record or

with a particular dimension to avoid excess repetition of

data values. One may have up to ten dimensions and there is

no limit on the dimension size.

This system is compatible with various application software

from NSSDC. Thus, this system is also more extensive than

just the basic subroutines imply. The authors of this

package have three recommendations to improve performance.

First, avoid skipping around the file as much as possible.

This can lead to excessive paging of information into and out

of memory and thereby degrade execution time. Second, multi-

dimensional arrays are stored in row major order. Thus, if

one is looping through an array, the innermost loop should

correspond to the first index and the outermost loop should

correspond to the last index. Third, variable numbers rather

than names should be used if time is critical.

As with the FlatDBMS package, each variable is accessed

individually. This is ideal for random access, however, it

is highly inefficient for going through an extensive set of

consecutive records. Unlike the FlatDBMS package, the source

code to these routines is not available. This has advantages

and disadvantages. It is useful in preventing a single user
from tailoring the package to the point where it is no longer

compatible with the original version thereby defeating the

purpose of a generalized format. However, it also makes

minor adjustments impossible and greatly hinders debugging

application code which uses these routines.

4

4. Storage Comparisons -- Flatfiles

The first test of the CDF was that of data storage overhead.

Does a CDF require an excessive amount of storage space

beyond that which is required by the data alone? To begin

with, a flatfile comprised of 2068 records with each record

containing an 8-byte word for the time variable and 21 4-byte

words for the magnetic field values Bx, By, and Bz from seven

ground stations was used. The disk space required for the data

alone is 372 blocks on the VAX (each block contains 512

bytes).

A Fortran file containing this data and written with an

unformatted WRITE statement occupies 388 blocks. The

FlatDBMS format requires 372 blocks for the data alone (this

does not include header information). Using a flat CDF where

each piece of data is assigned a variable (i.e., 22

variables) requires 390 blocks for the data alone. A one-

dimensional CDF using only four variables (time, Bx, By, and

Bz) each with a dimension of seven used 569 blocks. This was

due to the time being written seven times for each record.

Clearly, this was unnecessary. It may be prevented by

setting the dimvariances parameter equal to false in the

application code. Having done this, the four variable CDF

only needed 375 blocks. A two-dimensional CDF requiring only

two variables (time and B, where B has dimensions of (7,3)

for the seven stations and the three components of the field)

required only 373 blocks for the data alone.

In this discussion (and in the table below), no account has

been taken of the storage requirements for the header

information. This is built-in for the Fortran file which is

why its overhead is somewhat higher than that of the FlatDBMS

file and CDF file. Both of these database systems require

header information, but they are somewhat flexible in terms

of length. For the CDF, there are two parts to the header

5

information. The .CDF file serves as the directory which

links together all of the files in the CDF. The size of this

directory is determined by the number of variables and is not

controllable by the user. For the 22 variable set, it

requires 11 blocks, for the 4 variable set, it requires 5

blocks, and for the 2 variable set, it requires 4 blocks. In

addition to this, there is the .CDH file which contains the

metadata about the data set itself. It is this file which is

flexible with the user determining its length. For this

particular data set, the FlatDBMS file contained seven blocks

of header information. The same information in a CDF format

occupied six blocks in the .CDH file.

File Type Storage Blocks Overhead

Data alone 372 -
Fortran file 388 16
FlatDBMS file 372 0
CDF 22 variables 390 18
CDF 4 variables 569 197
CDF 4 optimized 375 3
CDF 2 optimized 373 1

Thus, the optimized CDF structure has 3.0% overhead on

storage as compared with the actual data. By comparison,

a Fortran file has 4.3% overhead and a flatfile has 1.9%

overhead.

5. Storage Comparisons -- Multi-dimensional Files

The next evaluation of storage requirements used a multi-

dimensional file. FlatDBMS is not designed to handle

hierarchical files, so for this comparison, only CDFs and

Fortran direct access files were used. The data set was

comprised of 110 records with each record containing 22

8-byte words and one 4-byte word of various parameters

pertaining to that given record plus two 8-byte arrays and

one 4-byte array of dimension 29x19 containing the average

fluxes (their standard deviations and number of counts,

respectively) for each energy level and pitch angle. This

data requires 2407 blocks on the VAX.

6

Since all variables must have the same dimension, the

parametric variables also have the dimensions of 29x19 even

though they are redundant for the various energies and pitch

angles. Without limiting the repetition of these parameters,

the CDF (comprised of 26 variables) occupies 24,174 blocks.

However, by constraining the 23 parameters, this CDF needs

only 2415 blocks. Thus, there are only 8 blocks of overhead

for the data itself.

Again no account has been taken of the storage requirements

of the header information. This is due to the flexibility of

the CDF. The exact storage requirements of the header is

dependent upon the needs of the user as was described in the

previous section. Note, that for this CDF, the 26 variables

require 12 blocks for the .CDF directory file.

For comparison purposes, four Fortran direct access files of

various record structures were written. Their particular

structures are as follows.

File 1 had 110 records (record length of 2800 longwords,

where a longword equals 4 bytes) with each record containing

23 parametric values and three 29x19 data arrays, one for

averages, standard deviations, and counts. This took up 2407

blocks on the VAX.

File 2 contained 440 records (record length of 1102

longwords) with the parametric values in record one, the

average array in record two, the standard deviation array in

record three, and the count array in record four. This four

record pattern was then repeated for the 110 times. This

structure used 3789 blocks (due to zero filling when the

record did not actually contain 1102 longwords).

File 3 was comprised of 6380 records (record length of 58

longwords) with the 23 parametric values in record one, the

29 average values in records two through 20, 29 standard

7

deviation values in records 21 through 39, and 29 count

values in records 40 through 58 (i.e., the 29x19 arrays were

broken into 19 records of 29 values each). This 58 record

pattern was then repeated for the 110 times. This file

occupied 2891 blocks.

File 4 was composed of 184,360 records (record length of 2

longwords) with each record containing one value. Thus,

records one through 23 each had one parametric value, records

24 through 574 each had one average value, records 575

through 1125 each had one standard deviation value, and

records 1126 through 1676 each had one count value. This

1676 record pattern was then repeated for each of the 110

times. This file needed 2881 blocks.

File Type Storage Blocks Overhead

Data alone 2407
CDF 26 variables 24174 21767
CDF 26 optimized 2415 8
File 1 2407 0
File 2 3789 1382
File 3 2891 484
File 4 2881 474

Thus, the optimized CDF file required 0.9% more storage than

the data alone or the long record Fortran direct access

format.

6. Preliminary Timing Comparisons

Bear in mind for this discussion of system requirements,

particularly the CPU time requirements, that this

investigation was done on a VAX 8650 with a Floating Point

Unit (FPU) and 48 Mbytes of main memory. The operating

system used was VAX/VMS version 4.7. As described in the CDF

Implementer's Guide, the process quotas were set such that

the paging file quota was 69063 (the minimum quoted in the

Guide was 20000), the enqueue quota was 400, and the open

file quota was 120.

8

The first set of timing runs were done on the previously

discussed multi-dimensional files. The optimized CDF

performance was compared to that of the four Fortran direct

access files. For this test, a set of random data values

were selected. The CPU time necessary to read these values

and print them out to the screen was obtained using VAX/VMS

library calls to the timer. The longer records required

fewer read statements. Thus, each file required a different

number of reads to get at the same data. Along with the CPU

time, timer returned elapsed time, buffered I/O, direct I/O,

and page faults.

A series of test runs were conducted accessing the same

values in 45 different ways with each test run three times.
These three tries were then averaged. The buffered I/O and

direct I/O did not vary with each of the 45 runs, but the

elapsed time, CPU time, and faults varied somewhat. The 45

different accessing patterns did not show any particular

trends in enhanced or degraded timing. This is to be

expected in a direct access file structure as opposed to a

sequential structure. Thus, the following comparisons will

be with respect to all cases for a given file format and not

to any particular subset of cases.

The buffered I/O was the same for all of the Fortran files,

but was slightly higher for the CDF file. The direct I/O was

nearly the same for Files 1 through 3, but was an order of

magnitude higher for File 4. The CDF file was only 3-4 times

higher than the first three files.

The page faults for Files 3 and 4 were very similar with the

number in the mid-thirties for the most part. File 2 was

slightly higher, in the low forties. File 1 was a bit higher

still with the number of page faults into the mid-fifties per

trial. However, the CDF file was significantly higher with

values in the low to mid-1100s.

9

Required CPU time for Files 1 through 3 were very similar

with File 1 requiring an average of .36 seconds, File 2

requiring .35 seconds, and File 3 requiring .40 seconds.

File 4 requirements were much higher than these, with an

average of 1.68 seconds. The CDF also required more than

the first three, but not as much as four with an average of

1.33 seconds. The number of data points accessed for this

comparison was relatively small. There is a question whether

or not the CPU requirements here are representative of a

full-scale processing program. Thus, another test was

conducted using a complete data set.

CPU(min) BUFIO DIRIO FAULTS

CDF: 1.33 266 47 1137
File 1: 0.36 240 10 55
File 2: 0.35 240 15 43
File 3: 0.40 240 15 36
File 4: 1.68 240 135 34

7. Full-Scale Timing Comparison

For this comparison, it was decided that a comparison to

FlatDBMS would be useful since it too is a generalized data

format package. Thus, a flatfile rather than an hierarchical

file was selected as the test database. The same file used

for the previous storage requirements was used here as well.

The Bx, By, and Bz data taken at the seven stations was taken

at five second intervals over an interval of approximately

three hours. Using a smoothing routine, SMOOFT, from

Numerical Recipes [Press et al.. 19861 the five-second data was

smoothed into one-minute averages.

The FlatDBMS file was written into a CDF structure with four
variables and optimized to eliminate redundancy (these two

files are discussed in a previous section: Storage

comparisons -- Flatfile). Then this data set was written

into two different Fortran direct access files with the

following record structures.

10

The Fortran direct access file with long records (FDA(long))

has 2068 records (1 record/time sample) each containing,

Time (8 bytes),

Bx -- for 7 stations (4 bytes),

By -- for 7 stations (4 bytes),

Bz -- for 7 stations (4 bytes).

Thus, the requisite storage is 372 blocks.

The Fortran direct access file with short records (FDA(short))

has (2068 time samples)(22 recs/time sample) = 45,496 records

with the following structure,

Record 1: Time (8 bytes),

Record 2 - 8: Bxl - Bx7 (4 bytes),

Record 9 - 15: Byl - By7 (4 bytes),

Record 16 - 22: Bzl - Bz7 (4 bytes).

Thus, the required disk space is 711 blocks, since each

record in the file must have the same fixed length and the

longest record is 8 bytes.

Each file was read in with the data placed in various arrays.

Each array was then smoothed and the subsequent arrays were

written out to a file of the same type as was read. The

results are as follows:

CPU(sec) BUFIO DIRIO FAULTS

FF: 17.66 37 79 764
17.32 37 79 758
17.16 37 79 760

CDF: 43.69 52 246 1041
43.70 52 242 892
43.69 52 243 884

FDA(long): 18.72 35 75 726
18.63 35 75 718
18.56 35 75 730

FDA(short): 34.24 45 1511 721
34.11 45 1512 718
33.52 45 1511 725

11

Clearly, the CDF requires much more time than the other

formats, about 2.5 times longer than a flatfile or a Fortran

direct access file with long records. In fact, the one which

is closest in the time requirements is the direct access

which has one piece of data per record. The CDF is also

based on this one variable per record format, which is why

the time required is so high. Each item requires a call to

the CDFvar get subroutine, whereas the long record direct

access file gets 22 variables per read.

8. Comments

A generalized data format has many virtues: easier data

transfer between various users, reduced application

development time, and quicker turn-around time to obtain

results. All of which are designed to simplify and speed

data analysis. Of the two packages discussed here, CDF is

clearly more flexible and is adaptable to a broader range of

data sets, even though the FlatDBMS processes data faster.

If CPU time is truly of the essence, one should probably rely

on the highly specific Fortran direct access file structure;

however, gains in CPU time may be offset by application

development time when using a variety of data sets.

To improve the processing time of the CDF structure, there

should be a way to bring arrays of a variable back from the

database with one subroutine call rather than having to make

a call for every single piece of information. This alone

could bring the CDF processing time within reasonable

proximity to that of a Fortran direct access file. Note that

this evaluation has been based on the VMS Fortran version 1.0

of the CDF routines. We understand (private communication,

Lloyd Treinish) that the next version of the CDF from NSSDC

will be able to access more than a single element at a time.

This next version will be in C, but Fortran bindings will be

available so that the routines may still be used within

Fortran source code.

12

For data sets which are anticipated to have a wide range of

distribution, the increased processing time may well be

entirely offset by the simplification of distribution for a

standardized data set and by a standard set of mature

routines with which to analyze the data. The time saved in

application software development could well be significant.

Both the FlatDBMS and CDF packages are easy to learn and use.

One can become reasonably proficient in using either one in a

day or two. The CDF system is a little bit easier to handle,

but there is not a large difference in the learning curve

between the two.

As mentioned previously, there is a drawback to being denied

access to the source code of these routines. For example, in

writing a routine to translate a FlatDBMS file into a CDF

file, there was a problem with the CDF not checking to see

which unit numbers were already in use for the FlatDBMS

files. The FlatDBMS system checks for this, however, it

limits the number of files open at any given time to six.

The CDF already had opened more than twenty files. Thus,

either the CDF needed to be altered to check for previously

opened units or the FlatDBMS needed to be altered to allow

more files to be opened simultaneously. Fortunately, the

FlatDBMS source code was available so this problem could be

solved.

Again, we have learned (private communication, Lloyd

Treinish), that this problem is resolved by the upcoming C

version of the code. Nonetheless, it is this sort of

problem which necessitates the availability of the CDF soure

code. NSSDC is aware of this problem and its resolution is

under consideration. Software licenses may become available

in the future. Additionally, concerns have been raised about

the need to know more about the physical structure of the

files in memory. This information is not provided in the

Implementer's Guide, but it is available upon request from

NSSDC.

13

We have attempted to provide an unbiased evaluation of CDFs

by examining CDF features which are relatively easy to

quantify such as storage requirements and access speed.

However, it is important to keep in mind that CDFs have a

number of other virtues which are more difficult to quantify,

but which we have only briefly mentioned in this document.

The self-documenting data structure, the capability for

handling diverse multi-dimensional data, and the advantages

for facilitating data exchange and software application

development should not be ignored when making a decision

about adopting the CDF data structures.

9. Acknowledgements

We are grateful to Lloyd Treinish at NSSDC for providing the

CDF code, documentation, and examples, and for answering our

questions on numerous occasions.

14

References

Gough, M.L., Goucher, G.W., and Treinish, L.A., NSSDC CDF

Implementer's Guide (DEC VAX/VMS), Version 1.1, National

Space Science Data Center, Greenbelt, MD, August 1988.

Press, W.H., Flannery, B.P., Teukolsky, S.A., and Vetterling,

W.T., Numerical Recipes, The Art of Scientific Computing,

Cambridge University Press, Cambridge, England, 1986.

Smith, A.Q. and Clauer, C.R., "FlatDBMS: A Versatile Source-

Independent System for Digital Data Management", EOS, 67,

n15, pp 188-189, April 15, 1986a.

Smith, A.Q. and Clauer, C.R., "FlatDBMS: A Flexible Source-

Independent Data Management System for Scientific Data",

STAR Lab Report D106-1984-1, Stanford University, Stanford,

CA, May 1986b.

Treinish, L.A. and Gough, M.L., "A Software Package for the

Data-Independent Management of Multi-Dimensional Data",

EOS, 68, n28, pp 633-635, July 14, 1987.

15

